FEM of Disc Joint

Finite element models (FEMs) provide a valuable tool to understanding disc mechanics with injury and degeneration. We have developed a finite element model that accurately simulates the mechanical behavior of the disc joint under axial rotation after axial compression. Using experimental data to validate our model parameters, we can now use the FEM to predict changes in mechanics following injury, such as a herniated disc. Compared to experiments, FEMs can also provide internal stress and strain distributions, which allows researchers to understand disc remodeling and injury (i.e., disc herniation).

Students working on this project include Bo Yang, and Minhao Zhou.

Simulation of bovine disc joint under axial compression followed by ± 5o axial rotation. Disc height increases during rotation.

Cross sectional view of circumferential stresses during axial rotation.

Sagittal-plane cross-section view of a disc model, which consists Bone, Nucleus Pulposus (NP), Annulus Fibrosus (AF), Cartilage Endplate (CEP).

Circumferential stress for disc rotation in the clockwise (CW) and counter-clockwise (CCW) direction (under 0.48 MPa pre-compression).